packages = ["numpy","pandas","scipy"]

Discounted Free Cash Flow Calculator

Have you ever wondered how much your business is worth, or what a reasonable stock price for your favourite company should be? This calculator will help you land a rough estimate based on the discounted free cash flow (DCF) method. Read more about the DCF method here.

Calculator Parameters
!
!
!
%
!
%
!
%
!
%
!
%
!
!
!
%
!
!
!

import pyscript from js import document from pyodide.ffi import create_proxy import numpy as np import pandas as pd from scipy.optimize import curve_fit def calculate(e): # Reset any potential error messages document.getElementById("errorMessageShEquity").textContent = "" document.getElementById("errorMessageCheck").textContent = "" # Read inputs numcols = document.getElementById("numColumns").value safety_margin = document.getElementById("safetyMargin").value safety_factor = 1 - (float(safety_margin) / 100) shAmountEnd = document.getElementById("shAmountEnd").value shAmountEnd = int(shAmountEnd) shEquity = document.getElementById("shEquity").value shEquity = float(shEquity) assets = document.getElementById("assets").value assets = float(assets) liabilities = document.getElementById("liabilities").value liabilities = float(liabilities) revenue = np.array([]) x = np.array([]) for i in range (1, int(numcols)+1): revenue = np.append(revenue,np.array([float(document.getElementById("cellj1k"+str(i)).value)])) x = np.append(x,np.array([i])) # Find best fit growth rate # Start by scaling numbers down downscaled = revenue / 10**len(str(revenue[0])) # Apply curve fit function popt, pcov = curve_fit(lambda x,b,m: b*m**x,x,downscaled,maxfev = 1000) growth_rate = document.getElementById("growthRate").value growth_rate = float(growth_rate)/100 + 1 # Find current estimated revenue est_curr_rev = popt[0]*growth_rate**x[-1] * 10**len(str(revenue[0])) # Find revenue estimate array rev_est_array = [] # Project future revenues and free cash flow for a time period equal to input period. x_cont = np.arange(x[-1]+1,x[-1]+1+len(x)) projected_revenue = popt[0]*growth_rate**x_cont * 10**len(str(revenue[0])) # Find free cash flow margin fcf_margin = document.getElementById("fcfMargin").value fcf_margin = float(fcf_margin)/100 # Read perpetual growth rate perpetual_growth_rate = float(document.getElementById("perpetualGrowthRate").value) perpetual_growth_rate = perpetual_growth_rate/100 # Read required return required_return = float(document.getElementById("requiredReturn").value) required_return = required_return/100 # Set terminal value horizon h = int(numcols) # Calculate discounted terminal value discounted_TV = (projected_revenue[-1]*fcf_margin*(1+perpetual_growth_rate) / (required_return - perpetual_growth_rate))/((1+required_return)**h) # Calculate discounted cash flows discounted_FCF = 0 for j in range(0,h): discounted_FCF = discounted_FCF + (projected_revenue[j]*fcf_margin)/((1+required_return)**(j+1)) # Get shareholder's equity from either assets and liabilities or entered value if shEquity == 0 and assets == 0 and liabilities == 0: document.getElementById("errorMessageShEquity").textContent = "Missing data: Please enter most recent values for total stockholder's equity, or total assets and total liabilities to factor it into the valuation estimate." document.getElementById("errorMessageShEquity").style.color = "red" # Calculate intrinsic value intrinsic_value = discounted_FCF + discounted_TV + shEquity intrinsic_value_per_share = intrinsic_value/shAmountEnd # Calculate dilution/contraction shAmount_change = document.getElementById("shAmountChange").value shAmount_change = float(shAmount_change)/100 + 1 # Calculate adjusted intrinsic value adj_intrinsic_value = intrinsic_value/shAmount_change adj_intrinsic_value_per_share = adj_intrinsic_value/shAmountEnd # Check for number of errors in the parameter inputs error_message_ids = ["errorMessage", "errorMessage2", "errorMessage3", "errorMessageShEquity"] error_message_sum = 0 for j in range(0,len(error_message_ids)): if document.getElementById(error_message_ids[j]).textContent != "": error_message_sum += 1 if error_message_sum > 0: document.getElementById("errorMessageCheck").textContent = str(error_message_sum) + " warning(s) found, see detailed error messages." document.getElementById("errorMessageCheck").style.color = "red" # Print results Element("result").write(str(round(adj_intrinsic_value*safety_factor,3))) Element("result2").write(str(round(adj_intrinsic_value_per_share*safety_factor,3))) Element("assumption1").write(str(round((growth_rate-1)*100,4)) + "% yearly growth over the next " + str(numcols) + " years.") Element("assumption2").write("Free cash flow margin of " + str(round(fcf_margin*100,1)) + "%") Element("assumption3").write("Perpetual growth rate of " + str(round(perpetual_growth_rate*100,1)) + "%") Element("assumption4").write("Required Return of " + str(round(required_return*100,1)) + "%") if (shAmount_change-1) < 0: Element("assumption5").write("Amount of shares will decrease by " + str(round((shAmount_change-1)*100,4)) + "%") else: Element("assumption5").write("Amount of shares will increase by " + str(round((shAmount_change-1)*100,1)) + "%") calculate_proxy = create_proxy(calculate) calculate_button = document.getElementById("Calculatebtn") calculate_button.addEventListener("click", calculate_proxy) # Add a function to calculate growth rate and update input field def updateParameters(e): # Read single inputs and create arrays numcols = document.getElementById("numColumns").value revenue = np.array([]) income = np.array([]) opCashFlow = np.array([]) capEx = np.array([]) FCF = np.array([]) x = np.array([]) # Populate arrays for i in range (1, int(numcols)+1): revenue = np.append(revenue,np.array([float(document.getElementById("cellj1k"+str(i)).value)])) income = np.append(income,np.array([float(document.getElementById("cellj2k"+str(i)).value)])) opCashFlow = np.append(opCashFlow,np.array([float(document.getElementById("cellj3k"+str(i)).value)])) capEx = np.append(capEx,np.array([float(document.getElementById("cellj4k"+str(i)).value)])) FCF = np.append(FCF,np.array([float(document.getElementById("cellj5k"+str(i)).value)])) x = np.append(x,np.array([i])) # Calculate growth rate downscaled = revenue / 10**len(str(revenue[0])) popt, pcov = curve_fit(lambda x,b,m: b*m**x,x,downscaled,maxfev = 1000) growth_rate = round((popt[1] - 1)*100,4) # Calculate fcf margin # If no fcf is entered, use opCashFlow and capEx, if (FCF == 1).all(): fcf_margin = ((np.sum(opCashFlow)-np.sum(capEx))/np.sum(revenue))*100 document.getElementById("errorMessage3").textContent = ""; # or if no opCashFlow or capEx is entered, use net result, if (opCashFlow == 1).all() or (capEx == 1).all(): fcf_margin = (np.sum(income)/np.sum(revenue))*100 document.getElementById("errorMessage3").textContent = ""; # or if no income is entered, complain about lacking data, if (income == 1).all(): document.getElementById("errorMessage3").textContent = "Missing data: Please enter free cash flow, or operating cash flow and capital expenditures, or net income to estimate free cash flow margin."; document.getElementById("errorMessage3").style.color = "red"; # else, calculate fcf margin from fcf entries. else: fcf_margin = (np.sum(FCF)/np.sum(revenue))*100 document.getElementById("errorMessage3").textContent = ""; if fcf_margin/100 > 1: document.getElementById("errorMessage3").textContent = "Free cash flow margin cannot be more than 100%. Please check your numbers."; document.getElementById("errorMessage3").style.color = "red"; # Calculate perpetual growth rate if growth_rate > 20: perpetual_growth_rate = 3.0 else: perpetual_growth_rate = growth_rate*3/20 # Update parameter fields document.getElementById("growthRate").value = growth_rate document.getElementById("fcfMargin").value = round(fcf_margin,4) document.getElementById("perpetualGrowthRate").value = round(perpetual_growth_rate,4) # Add event listener to table to call the function when a value is entered numberTable_proxy = create_proxy(updateParameters) numberTable = document.getElementById("numberTable") numberTable.addEventListener("input", numberTable_proxy) def calculateShEquity(e): assets = document.getElementById("assets").value assets = float(assets) liabilities = document.getElementById("liabilities").value liabilities = float(liabilities) if liabilities < 0: liabilities = -liabilities # Calculate shareholder's equity shareholders_equity = assets - liabilities # Update parameter fields document.getElementById("shEquity").value = shareholders_equity # Add event listener to assets and liabilities assets_proxy = create_proxy(calculateShEquity) assets = document.getElementById("assets") assets.addEventListener("input", assets_proxy) liabilities_proxy = create_proxy(calculateShEquity) liabilities = document.getElementById("liabilities") liabilities.addEventListener("input", liabilities_proxy) def calculateShAmountChange(e): shAmountStart = document.getElementById("shAmountStart").value shAmountStart = int(shAmountStart) shAmountEnd = document.getElementById("shAmountEnd").value shAmountEnd = int(shAmountEnd) # Calculate change in shares if shAmountStart == 0: print("Missing data: Please enter the amount of shares at the beginning of the period.") else: shAmount_change = round(((shAmountEnd/shAmountStart)-1)*100,4) # Update parameter fields document.getElementById("shAmountChange").value = shAmount_change # Add event listener to share amount start shAmountStart_proxy = create_proxy(calculateShAmountChange) shAmountStart = document.getElementById("shAmountStart") shAmountStart.addEventListener("input", shAmountStart_proxy) # Add event listener to share amount start shAmountEnd_proxy = create_proxy(calculateShAmountChange) shAmountEnd = document.getElementById("shAmountEnd") shAmountEnd.addEventListener("input", shAmountEnd_proxy)